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Abstract

Heavy tails and time-varying autocorrelation (also called nonlinear dynamics) are

both stylized facts of financial returns that destabilize markets. The former are extreme

events by definition and the latter is known to cause volatility clustering. This work

disentangles the two sources and examines which one does the greater damage, whether

the threat can be reduced via diversification, and how an inclusion of nonlinear dynamics

can enhance the quality of risk modeling. The analysis is carried out for index time series

representing seven different asset classes and for individual stock portfolio time series.

The isolation of the stylized facts is achieved under recent developments in surrogate

analysis (IAAFT, IAAWT). While tail risk historically received more attention, espe-

cially in financial regulation, we observe that the change in autocorrelation is the greater

driver of maximum drawdowns and aggregate losses across all time series. We further

find that diversification does not yield any protection from those risks. These insights

have widespread implications for appropriate policy-making, efficient risk hedging, and

investment management.
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1 Introduction

Asset returns are known to be neither normally distributed nor of perfect random order. In

contrast, they appear to exhibit a heavy-tailed distribution and their randomness (autocor-

relation) changes over time, a phenomenon that is also known as nonlinear dynamics. We

will use the terms ’time-varying autocorrelation’ and ’nonlinear dynamics’ interchangeably.

Empirical evidence for heavy tails and nonlinear dynamics in asset returns is extensive, which

is why these two statistical properties are mutually accepted for financial markets and called

stylized facts by now (see Cont, 2001; Jiang et al., 2019; Lux & Alfarano, 2016, for a pro-

found review). Both facts are known to adversely affect market stability. Heavy tails are

extreme and thus potentially destabilizing events by definition. Time-varying autocorrela-

tion in returns (nonlinear dynamics) affects the development of returns. For example, equity

returns tend to be positively autocorrelated (trending) during bullish times, and negatively

autocorrelated (overreacting) during bearish times (Schadner, 2022a). These time-varying

dynamics are known to cause volatility clustering, i.e. longer subsequent periods of high

volatility. Both stylized facts—heavy tails and nonlinear dynamics—are argued to be nested

within investor behavior and therefore hard to rationalize (Lux & Alfarano, 2016). Given

these two destabilizing forces, the important question as to which one is worse rises.

Answering this question is important as it directly affects risk management, investment man-

agement, and academic research. On the one hand, sound knowledge about the destabilizing

effects of heavy tails and nonlinear dynamics can be insightful for proper and cost-effective

hedging strategies. On the other hand, exposure to such risks may be rewarded with a risk

premium and could be an interesting source of returns for investment managers. From an

academic perspective, the influence of both factors on financial stability may answer questions

on how to realistically model asset returns.

Besides the areas listed above, we observe that the answer to which one is worse may be

most crucial for policy-making. Currently, the regulation appears to focus mostly on the

reduction of heavy tails while the effects of nonlinear dynamics remain mostly untouched.

The regulation of banks is centralized through the Basel Framework that is developed by the

Basel Committee on Banking Supervision (BCBS). It sets minimum regulatory requirements
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for its 45 members which comprise central banks and bank supervisors from 28 jurisdictions.

Therefore, a systematic neglection of an important risk driver may have catastrophic conse-

quences for global financial stability. Given this potentially strong need for action, our paper

is tilted toward the policy applications of the research question. Its goal is to provide a basis

for whether the focus on heavy tails is appropriate to ensure financial stability or whether

nonlinear dynamics of financial markets should be granted more attention. However, the

insights are also applicable to the areas listed above.

Within this work, we disentangle the two sources of financial instability via surrogate analysis.

The method allows us to transform a return series into surrogates that first, follow a normal

distribution while preserving the nonlinear dynamics, second, keep the initial distribution

while removing the nonlinear dynamics, and third, follow a normal distribution without

nonlinear dynamics. The resulting surrogate series can be interpreted as the original return

series for which one or both stylized facts were removed while leaving all other characteristics

untouched. Upon these disentangled series we compute maximum drawdown and worst year-

over-year losses to assess the adverse impact of each of the two stylized facts. The analysis is

carried out for daily index log-returns representing the seven asset classes of stocks, bonds,

private equity, foreign exchange, commodities, real estate, and cryptocurrency. Further, we

analyze daily stock log-return series of S&P 500 constituents of which we build portfolios with

different numbers of portfolio holdings. From this portfolio analysis, we examine both, how

diversification impacts the presence of heavy tails and nonlinear dynamics and how those two

stylized facts translate into drawdown measures. Lastly, to demonstrate the potential flaws

of the current regulation we perform a simplified VaR modeling example that incorporates

nonlinear dynamics.

The main contribution of our paper is threefold. To our knowledge, we are the first to

evaluate risk metrics on return series from which heavy tails and nonlinear dynamics were

isolated while preserving all other statistical properties. Thus, our first contribution is that

we quantify which of the two stylized facts more adversely affects market stability. Our sec-

ond contribution is that we expand this analysis to an equity portfolio context. This allows us

to evaluate the benefits of diversification, i.e. whether it reduces the presence and severity of

the two risk drivers in portfolios. Lastly, we not only point out the weaknesses of the current
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regulation but also provide a simple workaround on how potentially flawed regulatory risk

metrics can be fixed. In general, this paper attempts to build a bridge between the latest

developments in surrogate analysis and real-world applications. We observe that especially in

the literature on nonlinear dynamics, asset returns are taken as a go-to dataset in empirical

analyses, but most works solely focus on the measurement of statistical characteristics. Our

goal is to close the gap between this rather technical literature and broader finance appli-

cations. In doing so, we try to avoid overly technical jargon and excessive descriptions of

model specifications. Instead, we focus more on the interpretation of our results and attempt

to give sound understanding to an audience that may not have been exposed to research on

nonlinear dynamics before.

Our findings show that all financial time series that are used in the analysis are exposed

to excess heavy tails and nonlinear dynamics. Diversification seems to increase heavy tails

while levels of nonlinearity remain unaffected. We observe that removing heavy tails from the

original return series reduces maximum drawdowns by about 5% to 19% across asset classes.

In contrast, removing nonlinear dynamics has an even greater potential for market stability

with a respective reduction in maximum drawdowns of about 20% to 40%. We further find

that the removal of both stylized facts only leads to marginal differences compared to the

cases when only nonlinearity is removed. The results for worst year-on-year returns yield

a very similar picture. In a portfolio context, we discover that both drivers of drawdowns

can not be tamed by using diversification as the weapon of choice. We find that the better

diversified the portfolio, the stronger the effect of removing heavy tails and/or nonlinear

dynamics on maximum drawdowns and worst year-on-year returns. Lastly, our simple model

example demonstrates how the neglection of nonlinear dynamics can introduce estimation

errors and shows that the inclusion of locally estimated scaling exponents can enhance the

quality of risk models.

We conclude that while policy makers and potentially some investment managers largely fo-

cus on heavy tails, our empirical insights reveal that hedging/removing nonlinear dynamics

is of even greater importance for financial stability and risk reduction. It is, however, worth

noting that the topic has gained attention among policy makers who acknowledge that the

nonlinear dynamics of financial markets have an impact on financial stability and are often
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ignored by the assumption of independent and identically distributed (iid) returns in regula-

tions (Anderson & Noss, 2013). However, with our novel analysis, the severity of nonlinear

dynamics is quantifiable for the first time and our findings show that a simple acknowledg-

ment is not enough. Rather, the effects of nonlinear dynamics should be considered for future

iterations of the regulation as soon as possible.

The structure of the remaining article is as follows: Section 2 gives an overview of the

relevant literature for our work. Section 3 provides an introduction to nonlinear dynamics

that is designed for readers who are unfamiliar with that matter. Section 4 gives a brief

overview of the relevant Basel regulatory framework. Section 5 introduces the methodological

concepts for the segregation of the two stylized facts from the return series. Section 6 contains

the empirical analysis of the paper. It first assesses the effects of heavy tails and nonlinear

dynamics on financial stability. Then it provides a simple example of how nonlinear dynamics

can be used in a regulatory modeling context to enhance the quality of risk models. Section 7

concludes and lays out the implications of our work. The Appendix holds supplementary

material such as technical details of our model specification.

2 Related Literature

Our paper relates to multiple strains of literature. It expands on studies of nonlinearity and

higher order moments in financial returns. Also, it is related to the literature of risk-modeling

and return forecasting.

Empirical evidence about the existence of nonlinearity in asset returns was first gathered

for US stocks (Ding et al., 1993; Lo, 1991). Later studies confirm the findings for the US

and expand the analysis to other financial markets. Those include developed stock markets

(Alvarez-Ramirez et al., 2008; Al-Yahyaee et al., 2018; Bogachev et al., 2007; Caraiani, 2012;

Di Matteo, 2007; Di Matteo et al., 2003; Grech, 2016; Shahzad et al., 2017; Turiel & Pérez-

Vicente, 2003, 2005), emerging stock markets (Cajueiro & Tabak, 2004; Caraiani, 2012; Di

Matteo, 2007; Di Matteo et al., 2003; Du & Ning, 2008; Kumar & Deo, 2009; H. Y. Wang

& Wang, 2018), including high-frequency analysis of both (Gu & Huang, 2019; Kwapień

et al., 2005), fixed-income markets (Aloui et al., 2018; H. Y. Wang & Wang, 2018), currency
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markets (Al-Yahyaee et al., 2018; Bogachev et al., 2007; Di Matteo, 2007; Di Matteo et al.,

2005; Drozdz et al., 2010; Schmitt et al., 2000), cryptocurrency markets (Al-Yahyaee et al.,

2018; Ghazani & Khosravi, 2020; Stosic et al., 2019), commodity markets (Al-Yahyaee et al.,

2018; Bogachev et al., 2007; Ghazani & Khosravi, 2020; Jiang et al., 2014; Shao, 2020), and

credit default swap markets (Aloui et al., 2018). Also, nonlinearity was studied in simulated

return series (Bogachev et al., 2008; Bogachev et al., 2007; Grech, 2016).

A theoretical foundation to model the nonlinear dynamics in financial markets was proposed

by Peters (1994) based on his criticism of the efficient market hypothesis (Peters, 1991).

At its core, his fractal market hypothesis.focuses on heterogeneity of agents with respect

to their investment horizons and information processing. With equally represented agents,

supply and demand clears smoothly as the same information may cause different actions

among investors. Periods of crisis occur if one group of investors dominates the market and

their actions cannot be cleared by others. Works that build on the fractal market hypothesis

include Blackledge et al. (2019), Dar et al. (2017), Kristoufek (2013), Lamphiere et al. (2021),

Li et al. (2014), Rachev et al. (1999), and Weron and Weron (2000). A current more in depth

overview of the fractal market hypothesis and its applications in modeling can be found in

Blackledge and Lamphiere (2022).

There is a vast literature that studies higher moments in financial returns. However, the

literature gets thinner the higher the moment of interest. Regarding the first moment, return

volatility, Ang et al. (2006), Ang et al. (2009) find that idiosyncratic volatility has an effect

on future returns of stocks. Blitz et al. (2013) and Blitz and van Vliet (2007) make similar

discoveries for total return volatility. These findings were reinforced by other studies who

find similar results in different financial markets (Baker & Haugen, 2012; Cao & Han, 2013;

Chung et al., 2019; Detzel et al., 2019; Joshipura & Joshipura, 2016, 2019).

Empirical works on the third moment, skewness, of asset returns include those of Amaya

et al. (2015), Bali and Murray (2013), Barberis and Huang (2008), Boyer et al. (2010),

Brunnermeier et al. (2007), Conrad et al. (2013), T. C. Green and Hwang (2012), Harvey

and Siddique (2000), and Mitton and Vorkink (2007). Others focus on the co-skewness of

assets with the market (Dittmar, 2002; Harvey & Siddique, 2000; Schneider et al., 2020).

Theoretical foundations for why skewness and co-skewness levels influence asset prices are
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laid out by (Barberis & Huang, 2008; Brunnermeier et al., 2007; Harvey & Siddique, 2000;

Kraus & Litzenberger, 1976, 1983; Rubinstein, 1973). It is worth noting that Jin et al. (2022)

report that the investment horizon plays a significant role for the pricing of co-skewness. They

find that the co-skewness of a stock scales differently between investment horizon and is only

priced for a small range of short horizons.

Literature on the fourth moment, kurtosis, of asset returns appears to be relatively scarce

in comparison to that on the second and third moment. Studies that examine kurtosis and

co-kurtosis in asset returns include Ang et al. (2006), Chang et al. (2013), Conrad et al.

(2013), and Dittmar (2002). Theoretical foundations for the pricing of kurtosis are laid out

by Dittmar (2002).

Nonlinearity and heavy tails can not be observed in isolation as it is found that both of these

stylized facts are interrelated. In general, it is found that nonlinear dynamics can either be

caused by heavy tailed distributions or temporal correlation (Kantelhardt et al., 2002). In

literature no consensus as to which of the two contribute most to the nonlinear dynamics

in financial data is found. While some find that the distribution has a higher contribution

(Barunik et al., 2012; Buonocore et al., 2016; Matia et al., 2003; Zhou, 2009) others have

provided evidence of the opposite (Benbachir & Alaoui, 2011; H. Chen & Wu, 2011; E. Green

et al., 2014; Kwapień et al., 2005; Suárez-Garćıa & Gómez-Ullate, 2014; Y. Wang et al.,

2011) or that both sources are significantly present (Kumar & Deo, 2009; Norouzzadeh &

Rahmani, 2006).

In the history of literature on risk modeling there have been several milestones. Until Man-

delbrot (1963) proposed that financial returns exhibit heavy tails and should be modeled

following a Pareto-Lévy distribution, returns were thought to follow geometric Brownian mo-

tion (Bachelier, 1900; Osborne, 1959). Following works neglected Mandelbrot’s theory and

found that while returns are indeed heavy-tailed, they they are not so heavy as to be de-

scribed by Lévy laws (Fama, 1976; Hsu et al., 1974; Officer, 1972). The seminal autoregressive

conditional heteroskedasticity (ARCH) model by Engle (1982) became widely acknowledged

and was able to capture volatility clustering of returns. As a side effect, the distributions

created by this model exhibit heavier tails than the normal. A generalization of the ARCH

model (GARCH) was proposed by Bollerslev (1986). Multiple variations of the ARCH model
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were developed to better capture further characteristics of financial returns. For example, the

exponential ARCH (EGARCH) model was developed to account for the asymmetric auto-

correlation between positive and negative price variations (Nelson, 1991). To better capture

long-term memory of variance integrated models such as the IGARCH model (Engle & Bol-

erslev, 1986) and its fractional successor FIGARCH (Baillie et al., 1996) were proposed. The

ARCH model (or some derivation thereof) is one of the most acknowledged models for mod-

eling financial returns to date. However, these models are argued to spuriously handle the

fractal nature of financial returns (Calvet & Fisher, 2002; He & Wang, 2017; Lv & Shan,

2013; Schmitt et al., 1999) and various studies have shown that fractal models have a higher

goodness of fit than different variations of ARCH models (H. Chen & Wu, 2011; W. Chen

et al., 2014; Frezza, 2014; Günay, 2016; Lux, 2001; Segnon & Trede, 2018; Wei & Wang,

2008).

3 Introduction to Nonlinear Dynamics

While most readers with a background in economics are familiar with heavy-tailed distri-

butions, the concept of nonlinear dynamics may require a little more explanation. A time

series is said to exhibit nonlinear dynamics whenever the autocorrelation between observa-

tions varies in time. For example, imagine you observe the return series of an asset. You find

that ten years ago the return of a given day was always positively correlated to the return

of the previous day. Also, you find that this pattern is not observable for the past year.

This exemplary asset is exposed to nonlinear dynamics because its autocorrelation structure

was not constant over time. In general, the serial dependence in time series measures the

series’ self-similarity and nonlinear dynamics measure how those similarity patterns change

over time.

The concept of nonlinear dynamics has a wide range of application that goes far beyond

finance. For illustrative purposes, take, for example, a tree. It can be seen as a complex

network of branches that become continually smaller. You will notice that if you zoom in,

the shape of successive branches resembles that of the previous generation so the structure of

the whole tree exhibits self-similarity. However, it may be that at different levels of resolution
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the degree of self-similarity varies (i.e. that larger branches may look less alike than their

smaller counterparts and some may even look random). The tree exhibits nonlinear dynamics

as it is a network that cannot be described by linear equations but yet it is not fully random.

Let us take the analogy of examining a tree from different levels of resolution to financial

markets. In a similar fashion we can study the similarity of financial return series at different

time scales. An example is to examine whether long-term economic cycles exhibit the same

degree of self-similarity as individual trading days or months. The measurement of self-

similar structures is not a simple task to do. However, self-similarity implies that the series

under investigation exhibits some level of persistence. A way to measure that persistence is

to quantify the distance traveled between two points. For illustrative purposes, think about

the Pacific coast line of the US. Same as with the tree, it exhibits a degree of self-similarity

as certain sections of the coast line may look very similar to others and they are not formed

completely random. If you were to measure the length of that coast line between two points

with an imaginary mile-long ruler, you would end up with a certain length. If you now take a

meter-long ruler, the resulting length would grow as you are able to measure small twists and

turns more accurately. Consequently, the length you measure depends on your ruler length

(or scale). In fact, it grows as a power law function of your ruler length.

Applying this example to financial markets, the outcome of the persistence estimation strongly

depends on the time scaling of returns (the ruler). We can be certain that if we calculate the

sum of absolute returns over any time interval of a financial time series using daily returns

the result would be smaller as if we used 5-minute returns instead. Another way of measuring

the distance between two points in a financial series is to compute the volatility of returns

over that time interval defined as

Vt(s) =
√
E [(Rt(s)− E[Rt(s)])2] (1)

for a log-return seriesRt(s) over a time window of s from time t to t+s. E denotes expectations

to enhance readability. Following the above discovery we can expect V (s) to exhibit the
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following power-law relation

V (s) = V0s
H (2)

where V0 denotes the base level of the volatility. Here, we are only interested in the scaling

relation with respect to the time scale s so we can reduce the equation as

V (s) ∼ sH =⇒ log(V (s)) ∼ H log(s) (3)

In the above equations H denotes the scaling exponent that is also known as the Hurst ex-

ponent (Hurst, 1956). For price-like series it has the property of H ∈ (0, 1) and is a measure

of the returns’ autocorrelation or persistence.1 If returns are iid they are uncorrelated and

H = 0.5. If H > 0.5 returns are persistent whereas if H < 0.5 they are anti-persistent.

In finance the iid assumption is widely employed which is why the volatility of returns is

commonly scaled via the square-root of time (i.e., s0.5). Nonlinearity refers to the circum-

stance that H is not constant but rather varies in s. This is also called ’multifractality’ or

’multiscaling’. For financial return series this means that returns in small time scales may

exhibit higher (or lower) autocorrelation than those in larger time scales. The degree of

nonlinear dependence measures the fluctuation of H in s (i.e., the range of H across time

scales). In general, the degree of autocorrelation has a strong influence on volatility and thus

drawdowns and tail risk. If there is a high degree of autocorrelation, returns tend to trend

and deviate strongly from their mean, leading to a high volatility. Whereas low to negative

autocorrelation will cause returns to cancel out each other and stay closer around their mean,

leading to lower volatility.

In the presence of high nonlinear dynamics, scaling volatility via a constant factor can lead

to estimation errors as each time scale requires its unique scaling exponent. An example for

these errors can be found in Table 1. The table holds the volatilities for log-returns of the

S&P 500 index at different time scales. Note, that the underlying return series are daily

returns and higher return intervals were generated using accumulation. Thus, the sample

1There is vast empirical evidence that the power-law scaling properties of Equation 3 hold for financial
returns (see Jiang et al., 2019; Lux & Alfarano, 2016, for a profound review).

10



size for the volatility estimates is constant for each time interval but samples overlap. The

bold numbers are the calculated volatilities using the return series of the same time scale.

The remaining entries in each row hold volatility estimates from a different time scale that

were scaled up or down following the common convention of scaling via the square-root of

time, s0.5. The values in parentheses underneath the scaled estimates show the respective

estimation error. The results show that using the common scaling convention can lead to

large errors. For example, estimating yearly return volatility using the scaled daily return

volatility yields an overestimation of 19%.

Table 1: Volatility Scaling Errors of S&P 500
This table reports volatilities of the S&P 500 log returns at different return intervals between 1 Januar 1996 and 31

December 2021. The returns are scaled to the respective intervals via accumulation. Each row holds the volatility of

returns for each period. The bold numbers are the actual volatilities as calculated from the respective return interval.

The remaining entries in each row hold the volatility estimates of estimates from a different interval that are scaled

down/up following the common convention of multiplying the volatility estimate with the square-root of the respective

time interal, s0.5, to which the volatility should be scaled. The numbers in parantheses underneath each row report the

estimation error of the scaled volatility estimates.

Daily Weekly Monthly Yearly 10 Years

Daily 1.21% 1.08% 1.06% 1.02% 0.92%
(-10.7%) (-12.9%) (-16.0%) (-24.5%)

Weekly 2.71% 2.42% 2.73% 2.23% 2.01%
(12.0%) (12.7%) (-7.7%) (-17.0%)

Monthly 6.64% 4.19% 4.72% 4.65% 4.18%
(40.6%) (-11.2%) (-1.6%) (-11.5%)

Yearly 19.17% 17.45% 16.36% 16.10% 14.48%
(19.0%) (8.4%) (1.6%) (-10.1%)

10 Years 60.62% 55.19% 51.73% 50.92% 45.80%
(32.4%) (20.5%) (13.0%) (11.2%)

4 Regulatory Framework

Within this paper we focus on the MAR standard of the Basel Framework that describes

how to calculate capital requirements for market risk. In general, the Basel Framework sets

our minimum regulatory requirements for its 45 members that comprise central banks and

bank supervisors from 28 jurisdictions. These requirements are then adapted by its members
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into local laws. At the end of 2022 there was a change of the Basel regulation. Because the

duration for a regional implementation of the regulations may be different between members,

we lay out the most current and prior version of the regulation below briefly and highlight

how heavy tails and nonlinear dynamics are included or neglected.

In the recent Basel 2.5 framework that was effective until December 31, 2022, in determining

their market risk for capital requirements banks could choose between a standardized and

an internal model approach (BCBS, 2019, MAR10.11). The primary risk measure for the

assessment of the capital requirements was the 99th percentile value-at-risk (VaR). In cal-

culating VaR, banks had to use 10-day returns. They were allowed to use ”VaR numbers

calculated according to shorter holding periods scaled up to ten days by, for example, the

square root of time” (BCBS, 2019, MAR30.14 (3)). Heavy tails were accounted for in this

regulation as the VaR measure with its focus on an outer percentile of the return distribution

is a tail-measure by construction. However, the effect of nonlinear dynamics was neglected

twice. First, only one time horizon (ten days) is to be used in the assessment of risk. Second,

the use of a uniform scaling factor (square root of time) does not acknowledge for the unique

scaling behavior of different financial assets.2

In the subsequent Basel 3 framework banks can again opt for an internal risk model approach

(BCBS, 2020, MAR11.7). Within this approach, risk is assessed using the 97.5th percentile

expected shortfall (ES) (BCBS, 2020, MAR33.3). Banks are required to calculate the ES at

a base horizon of ten days that is not to be scaled from shorter time horizons. They further

have to specify a set of risk factors for which the regulation sets a respective time horizon.

Depending on the risk factor exposure the bank has to scale a modified version of the 10-day

ES with the square root of a time delta that is determined by the prescribed time horizon.

The capital requirements are then determined by the sum of the base ES and the sum of the

scaled ES that are determined by the risk factor exposure (BCBS, 2020, MAR33.4). Again,

heavy tails are captured by the ES measure by construction. This comes at no surprise as

one of the reasons for the regulatory revision was to better capture tail risk (BCBS, 2019).

Nonlinear dynamics are again not rightfully accounted for as the base ES measure is scaled

2Readers who are unfamiliar with the concept of nonlinear dynamics may address section 3 to follow along
this evaluation of the regulation.
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with the square root of time for periods beyond ten days.

5 Methodology

Surrogate analysis is a well-established tool for hypothesis testing across scientific disciplines

(see e.g., Keylock, 2019). It allows to transform time series to match a specific feature—

like the distribution or the autocorrelation—while preserving the other characteristics of the

original series. The advantage over a comparable simulation approach is that surrogates do

not require knowledge about the underlying stochastic process, hence are less assumption

sensitive. As with simulations, robust conclusion can be only drawn from a larger number of

surrogates. Our methodology is closely related to that of Barunik et al. (2012), Buonocore

et al. (2016), E. Green et al. (2014), and Zhou (2009) and many others who compare financial

data to surrogate time series and draw conclusions on certain characteristics of the original

data.

5.1 Keep Heavy Tail, remove Nonlinearity: IAAFT

The simplest example to create a surrogate series that removes all dependence among ob-

servations is a random shuffle. While the distribution itself stays untouched, its order in

time is randomized which in turn destroys all linear and nonlinear autocorrelation. However,

asset returns do not follow a perfect random walk empirically and typically have a modest

degree of linear dependence (see e.g., Li et al., 2016). The level of linear dependence is one of

the factors that determine the scaling of volatility and consequently impacts time-aggregated

risk metrics. Thus, keeping the same linear dependence structure of the original series while

removing all nonlinear dynamics is crucial to make a fair evaluation of the latter in terms of

risk. A simple random shuffle of returns is thus inappropriate in our context.

To keep the original level of linear dependence, we use the iterated amplitude adjusted Fourier

transform (IAAFT) of Schreiber and Schmitz (1996) to create our surrogate data. This

algorithm allows us to destroy the nonlinear dependence while preserving the original return

distribution as well as their original linear dependence. In a nutshell, the algorithm reorders

the original returns in time while preserving their linear autocorrelation structure.
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In more detail, the algorithm can be split into three steps:

1. Perform a Fourier transform of the original data. This transformation splits the original

series into its power spectrum and phase. The power spectrum describes the periodicity

of the original series and reveals repetitive patterns as well as their strength. It is the

linear autocorrelation structure of the original data. The phase gives information about

how the different patterns of the original series are ordered in time.

2. Perform a random shuffle of the original data

3. Iterate the following two steps until a convergence criterion is fulfilled or any changes

are so small that they do not cause a re-ordering of the values of the previous iteration:

(a) Perform a Fourier transform of the shuffled (newly generated) series and retrieve its

power spectrum and phase. Replace the power spectrum with the power spectrum

of the original series that was retrieved in step 1. Perform an inverse Fourier

transform to generate a new dataset. Given the initial random sort, this means

that this new dataset has the same spectrum (linear autocorrelation structure) as

the original data but with phases (different order in time) of the shuffled (newly

generated) series.

(b) Replace the values of the series created above with those of the original series in a

rank-order matching process. This means that the largest observation of the new

series is replaced with the largest observation of the original series and so forth

until all observations of the new series are replaced. This preserves the original

distribution of the series. However, the replacement process has an influence on

the power spectrum of the resulting series and thus deteriorates the quality of the

matching of the linear autocorrelation structure. Because of this, steps (a) and

(b) are repeated until the difference between the linear autocorrelation structure

of the original series and the surrogate series is minimized.

The resulting surrogate series of this algorithm precisely matches the distribution function

of the original series as it simply reorders the original observations in time. The matching

of the linear autocorrelation structure is fulfilled until a given error tolerance. Because the
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algorithm performs a random shuffle before entering the iterative matching process, multiple

different surrogates can be created from the same original time series.3

5.2 Remove Heavy Tail, keep Nonlinearity: IAAWT

Preserving the time-varying autocorrelation structure is a bit more difficult to handle (see

Keylock, 2019). Recall, that nonlinear dependence can be understood as the linear autocorre-

lation structure to vary in time. To preserve this time-dependent structure while transforming

the original returns into a surrogate series that has equal statistical properties we use Key-

lock’s (2017) innovation of the iterated amplitude adjusted wavelet transform (IAAWT). This

algorithm resembles the nonlinear dependence structure and not solely the overall degree of

nonlinearity (like Paluš, 2008). A natural consequence of keeping the nonlinear dependence

structure is for example, that the surrogate’s volatility clusters around the same time of when

crises occurred. In short, the algorithm works relatively similar to the IAAFT—it reorders

the observations of the original time series while preserving its nonlinear autocorrelation

structure.

In more detail the algorithm can be split into the following steps:

1. Perform a wavelet transform of the original data. Same as the Fourier transform,

the transformation allows to split the original series into its power spectrum and phase.

However, the wavelet transform provides more detailed insights into the autocorrelation

structure of the original series. While the Fourier transform only retrieves the overall

linear autocorrelation structure , the wavelet transform also documents where and how

that structure changed in time. In other words, the wavelet transform captures the

nonlinear dynamics of the signal. Same as with the Fourier transform, that information

is captured in the power spectrum component of the transformation.

2. Perform a random shuffle to the original data.

3. Iterate the following two steps until a convergence criterion is fulfilled or any changes

are so small that they do not cause a re-ordering of the values of the previous iteration:

3For readers who seek for further explanatory material of this algorithm: A good visualization of the
algorithm can be found in Venema et al. (2006). An explanation why the power spectrum of the Fourier
transform equals the linear autocorrelation structure of the original series can be found in Vaseghi (2008).
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(a) Perform a wavelet transform to the randomly shuffled (newly generated) data

series and obtain the new phases, combine these with the original power spectrum

that was retrieved in step 1. Perform an inverse wavelet transform to generate a

new dataset. Again, the resulting series has the same nonlinear autocorrelation

structure as the original series but that structure is differently ordered in time.

(b) Replace the values of the new series with those of the original series in the same

rank-order matching process as in the IAAFT algorithm. The highest observation

of the newly created series is replaced with the highest observation of the original

series and so forth until all observations of the new series are replaced. Again,

the replacement process has an influence on the power spectrum of the resulting

series so the above two steps have to be repeated until the difference in nonlinear

structure between the original series and the surrogate series is minimized.

Again, the resulting surrogate series of the algorithm precisely matches the distribution func-

tion of the original series as it simply reorders the original observations in time. The matching

of the nonlinear autocorrelation structure is matched until a given error tolerance. Same as

with the IAAFT, because the algorithm performs a random shuffle before entering the iter-

ative matching process, multiple different surrogates can be created from the same original

time series.4

5.3 Illustrative Example of the Surrogate Algorithms

As we have explained above, the IAAFT and IAAWT algorithm can be used to create surro-

gates that have the same linear/nonlinear autocorrelation structure as the original time series

while preserving the original distribution. For parts of our application however, we want to

change the distribution of the surrogate data while keeping all other statistical properties

of the original data. We achieve this simply by using a different dataset in the rank-order

matching process within step 3(b) of the above two algorithms. For our purposes we fit a

normal distribution of same mean and variance to the original data and thus create a nor-

malized version of the original dataset with the same number of observations. Now, instead

4For readers who seek for further explanatory material of this algorithm: A more technical layout of the
algorithm can be found in the paper that developed this algorithm (Keylock, 2017).
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of replacing the observations in the surrogate time series with the observations of our original

data and step 3(b), we take the observations of our normalized data series. This change does

not affect the matching of the linear/nonlinear autocorrelation structure because it is explic-

itly controlled for as the convergence criterion in both algorithms after the match-making

process. Within this paper, whenever we perform normalization of the distribution function

we will mark the respective algorithm with the subscript n. Hence, if we perform a normal-

ization within the IAAFT (IAAWT) algorithm, we will show it in the notation as IAAFTn

(IAAWTn). Note, that this change of distribution can also be performed using any other

distribution function without affecting the desired correlation structure matching of both

algorithms.

An illustration of how we use the IAAFT and IAAWT algorithms to change the statistical

properties of return series can be found in Figure 1. The figure holds the original log-return

series of the S%P 500 index between the beginning of 1926 and the end of 2021 in the upper

time series. It can be observed that the time series exhibits bursty behavior that is especially

prominent during periods of financial distress. This volatility clustering shows that the time

series is most likely prone to nonlinear dynamics. Further, it can be seen that while most

returns fall closely around 0% there are a couple of very extreme observations, which make

the return distribution heavy-tailed.

Below the original time series, three exemplary surrogate time series are illustrated. The

series underneath the original returns was created using the IAAWTn algorithm. It can be

seen that the algorithm normalized the distribution as all heavy tails from the original returns

are removed, making the whole distribution much more compact (Note the change of scale

on the y-axis). The nonlinear dynamics of the original return series remain untouched as the

bursts in times of financial distress can also easily be identified in the surrogate series. The

series in the third row of the figure was created using the IAAFT algorithm. It can be seen

that it exhibits the same number and amplitude of extreme observations as the original return

series. This comes at no surprise because the individual observations within this surrogate

series are the same as within the original returns. When looking at the course of this surrogate

series it appears much smoother than the original and does not exhibit such bursty, nonlinear

behavior. The bottom series was created using the IAAFTn algorithm. Similar to the data
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series in the second row, because of the normalization its extreme observations are not as

severe as that of the original return series. Additionally, and very similar to the series in row

3, its course appears to be much smoother and no volatility clusters are apparent.
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Figure 1: Exemplary comparison of original and surrogate time series for the S%P 500 Index
The figure shows the returns for the original S%P 500 Index and for two surrogate series that do not exhibit heavy tails

or nonlinear dynamics. The time series range from the beginning of 1926 until the end of 2021. The surrogate series

without heavy tails was created using the IAAWTn method. The surrogate series without nonlinearity was created

using the IAAFT method. The surrogate series without both stylized facts was created using the IAAFTn method.

6 Empirical Analysis

The empirical analysis of our work can be separated into four parts. First, we provide an

overview of the data that is used in the following chapters. Second, we disentangle the sources

of financial instability for seven index return series to assess how different financial markets

are affected by heavy tails and nonlinear dynamics. Third, we analyze whether diversification

can protect investors from the destabilizing effects of the two stylized facts. Lastly, we show

how the neglection of nonlinear scaling dynamics can cause errors in risk modeling and how

those flaws can be resolved in an exemplary example that is inspired by current regulatory
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requirements.

6.1 Data

Our analysis focuses on two datasets. First, we analyze seven index time series of daily

log-returns, each representing a different asset class. The series have a common ending date

at 12/31/2021, the starting date was chosen individually with respect to data availability.

The data is described in more detail in Table 2. Second, to gain insights of the performance

of portfolios, we analyze daily log-returns of constituents of the S&P 500 index that we

pull from Datastream. We solely use constituents for which uninterrupted return data is

available between 01/01/1992 and 31/12/2021. Also, we exclude stocks for which returns

did not change for a trading week to exclude highly illiquid stocks from the analysis. The

total number of stocks in this dataset equals 144.5 The choice for the time horizon of this

dataset was made based on two counteracting objectives. First, the sample size was to be

maximized to increase statistical significance of results. Second, the time horizons of each

sample constituent was to be kept as long as possible because nonlinearity analyses yield

more robust results for longer time series (Shao et al., 2012). The dataset at hand finds a

compromise between having a fairly large sample with 144 stocks that covers a relatively long

time horizon of above 30 years.

From these 144 stocks we form portfolios at different levels of diversification. We chose the

number of portfolio holdings following theoretical and empirical findings in the literature.

Studies examining the effect of diversification subject to the number of portfolio holdings

report that diversification benefits decrease in the number of holdings and that they plateau

with the number of total holdings being around 40 (Evans & Archer, 1968; Mao, 1970;

Statman, 1987; Upson et al., 1975). Thus, the number of portfolio holdings we use are 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, and 45. For each of these holding

numbers we create 40 equal-weighted portfolios of which the constituents are randomly chosen

from the 144 available stocks. This choice to create 40 portfolios is based on the assumption

that the central limit theorem holds at that sample size and results are not strongly biased

due to outliers. Overall, our resulting total number of portfolios for the analysis is thus 800.

5A list of the respective company names can be found in Appendix A.
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To get an impression on the presence of the two stylized facts in our dataset, we compute

excess kurtosis and nonlinearity of the data. While the computation of excess kurtosis is

straight forward, quantifying the degree of nonlinear dependence is a little more involved.

For its assessment we compute spreads in Hölder exponents, ∆α, using the basic MF-DFA

method of Kantelhardt et al. (2002).6 These spreads are corrected for spurious inflation by

deducting the mean Hölder spread from IAAFT surrogates. An example for such spurious

sources is that false nonlinear dependence is introduced as a result of using data sets with

finite length and/or heavy tails (Grech & Pamu la, 2012; Grech & Pamu la, 2013; López &

Contreras, 2013; Mukli et al., 2015; Pamu la & Grech, 2014; Rak & Grech, 2018). Both false

drivers of nonlinear dynamics can be estimated by transforming the original time series into

IAAFT surrogate series. As described in subsection 5.1 the transformed IAAFT surrogate

series keep the same distribution as the original but do not exhibit nonlinear dynamics.

Therefore, nonlinearity measured on the surrogate time series should only be composed of

the two spurious sources. The true nonlinearity can be retrieved via subtracting the Hölder

spreads of the IAAFT surrogates, ∆αsurr, from the Hölder spreads of the original time series,

∆α:

∆αnl = ∆α−∆αsurr (4)

The excess spreads, ∆αnl, thus represent the magnitude of pure nonlinear dependence in the

original time series. We follow Schreiber and Schmitz (2000) who propose to use at least 19

(39) surrogate series for one-sided (two-sided) statistically significant results. Thus, we create

40 IAAFT surrogates and use their mean Hölder spread as ∆αsurr in the above equation.

We find a strong convergence of ∆αsurr for IAAFT surrogate samples larger than 20. From

this we conclude that the use of a larger surrogate sample would not alter the results of

our nonlinearity estimation. In other words, we find that the results of the nonlinearity

measurement are robust. This method to retrieve a pure measure of nonlinear dynamics was

6MF-DFA is one of the standard tools that is most widely used for characterizing nonlinear dynamics (see
Grech, 2016; Jiang et al., 2019). Its implementation is discussed in thorough detail by Ihlen (2012), thus not
repeated here. A recap on the MF-DFA algorithm and the choice of our model specifications are laid out in
Appendix B.
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also carried out by Pamu la and Grech (2014), Rak and Grech (2018), Schadner (2022b), and

Zhou (2012) and many more.

Results for the assessment of the two stylized facts are reported in Table 2 for the index data

and in Figure 2 for the stock portfolio data. The excess kurtosis for both data sets indi-

cates that all series are characterized by a heavy-tailed distribution. From the excess Hölder

spreads we observe that all return series are characterized by nonlinear dynamics. With

regards to the stock portfolios two more patterns can be observed. First, heavy-tailedness

seems to increase with the number of portfolio holdings while the degree of nonlinear dynam-

ics appears to be independent of the number of holding. Second, the distribution of both

measures decreases with the number of holdings. This is likely attributable to the fact that

the more holdings a portfolio has, the more idiosyncratic risk is diversified away and the more

similar the portfolios get.

Table 2: Description and summary statistics of the index data
This table holds data description and summary statistics for daily log-returns of the seven indices that were used in

the analysis. All series end with 12/31/2021. The second-last column reports excess kurtosis, which indicates heavy-

tailedness. The last column holds nonlinearity measured by the excess spreads in Hölder exponents using the MF-DFA

method of Kantelhardt et al. (2002).

Asset Class Instrument Source Start Kurt. Nonlin.

Stocks S&P 500 Index CRSP 1/2/1926 16.9 .183

Private Equity LPX Composite Listed P.E. Index Bloomberg 4/2/2004 23.8 .117

Bonds S&P 500 Bond Index Refinitiv 1/3/1995 6.52 .441

Foreign Exchange GBP/USD rate Refinitiv 8/19/1971 6.73 .811

Cryptocurrency FTSE Bitcoin Index Refinitiv 10/13/2015 3.83 .159

Commodity Bloomberg Commodity Index Refinitiv 1/3/1991 4.37 .145

Real Estate MSCI U.S. Liquid Real Estate Index MSCI 6/1/2001 18.9 .302
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Figure 2: Summary statistics of the stock portfolio data
The figure holds excess kurtosis in the left subfigure and nonlinearity measured by the excess spreads in Hölder exponents

using the MF-DFA method of Kantelhardt et al. (2002) in the right subfigure. The portfolios are composed using daily

log-returns of randomly chosen constituents of the S&P 500 index for which return data is available between 01/01/1992

and 31/12/2021, resulting into an investible pool of 144 stocks. For each number of holdings 40 equal-weighted portfolios

were formed.

6.2 Disentangling the Sources for Indices

For each of the seven return series we create 200 many IAAFT, IAAWTn, and IAAFTn

surrogates of same mean and variance as the original return series. The IAAFT surrogates can

be interpreted as if the original returns had no nonlinear dynamics, the IAAWTn surrogates

as if returns would be normally distributed, and the IAAFTn as a benchmark where both

stylized facts are removed from the original return series. Next, upon the surrogate series

we compute the risk measures of maximum drawdowns and worst year-over-year return to

compare them to each other as well as to the original series. The decision to focus on these

two risk measures was made because they are path dependent and can thus be influenced

by nonlinear dynamics and heavy tails in the distribution. Other risk measures such as the

empirical value at risk or the semi-standard deviation solely focus on the distribution of
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returns and are unaffected by nonlinear dynamics. In other words, because the distribution

of the surrogates is either equal to that of the original dataset or set to be normal, risk

measures that solely focus on the distribution will yield inconclusive results. Results for the

original series will be identical to those of the IAAFT series and results for the IAAWTn

series will be identical to those of the IAAFTn series because either of the two pairs share

the same distribution.7 Also, we prefer drawdown measures because they give a good proxy

of how prone a return series is to shocks. Thus these measures can be interpreted as proxies

for financial stability. The results for maximum drawdowns and worst year-over-year returns

are reported in Table 3. Figure 3 visualizes the disentangled maximum drawdowns. A

visualization for disentangled worst year-on-year returns is not presented because it looks

very similar to that of the maximum drawdowns.

The results show that each of the seven indices has a lower downside risk when nonlinear

dynamics rather than heavy tails are removed. We can see that in absolute terms the reduc-

tion is greater for asset classes that are more risky, i.e. stocks vs. bonds. However, when

looking at the relative change, we find that those are relatively similar across asset classes,

at least for maximum drawdowns. In general, we observe that the removal of heavy tails

reduces maximum drawdowns by roughly 17%. The removal of nonlinear dynamics reduces

maximum drawdowns by around 30%. For worst year-over-year returns the percentages are

a little more spread out. Furthermore, we find that when both stylized facts are removed,

the improvement in downside risk compared to a return series without nonlinear dynamics is

marginal. Hence, reducing nonlinear dynamics in returns has a greater potential for financial

stability.

7Note, that this holds true only if non-path-dependent risk measures are calculated with the same time
scale as the time series under investigation. If those measures were calculated under a different time scale, for
example, yearly (rolling) value at risk calculations for daily data, the results would be different for all time
series as a result of varying degrees of scaling properties among the time series.
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Figure 3: Maximum drawdowns of the different asset classes after disentangling stylized facts
The figure holds maximum drawdowns for three surrogates series of seven indices. Each surrogate series comprises

200 surrogates. The surrogates without heavy tails were created using the IAAWTn method. The surrogates without

nonlinearity were created using the IAAFT method. The surrogates without both stylized facts were created using the

IAAFTn method.

6.3 Disentangling the Sources for Stock Portfolios

In practice the go to weapon against risk is diversification. Hence, it makes sense to evaluate

whether the nonlinearity or heavy-tailedness of returns can be influenced with diversification

and how these changes translate into risk measures. In Figure 2 we already showed that

an increase in portfolio holdings leads to an increase in excess kurtosis while the degree of

nonlinear dynamics remains fairly constant across portfolio holdings. Hence, we can already

see that diversification does not reduce the presence of the two stylized facts. To determine

whether diversification yields protection regarding how the two stylized facts translate into

downside measures, we repeat the analysis that we carried out on an index level below.

We create five IAAFT, IAAWTn, and IAAFTn surrogate time series for each portfolio, leading

to a total of 200 surrogate series for each surrogate methodology and portfolio holding. Again,
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Table 3: Maximum drawdowns of original series compared to mean values of surrogates
The table compares maximum drawdowns and worst YoY returns for surrogates series without heavy tails, without

nonlinearity, and without both stylized facts of seven indices. Each surrogate series comprises 200 surrogates. The

surrogates without heavy tails were created using the IAAWT method. The surrogates without nonlinearity were

created using the IAAFT method. The surrogates without both stylized facts were created using the IAAFT method

under the constraint that the return distribution of the surrogates is normal. The numbers in parentheses indicate

relative reduction compared to original series.

Bonds Real Est. F.X. Crypto P.E. Comm. Stocks

max. Drawdown

Original -14.8% -45.8% -55.0% -56.3% -54.4% -77.2% -84.8%

w/o Heavy Tail -14.0% -39.0% -44.8% -46.1% -45.0% -64.2% -72.3%
(-5%) (-15%) (-19%) (-18%) (-17%) (-17%) (-15%)

w/o Nonlinearity -10.2% -28.7% -41.0% -45.3% -35.1% -61.0% -50.7%
(-31%) (-37%) (-25%) (-20%) (-36%) (-21%) (-40%)

w/o Both -10.1% -27.6% -40.9% -45.6% -35.1% -60.6% -49.8%
(-32%) (-40%) (-26%) (-19%) (-36%) (-22%) (-41%)

worst YoY return

Original -12.4% -35.0% -28.1% -50.1% -43.0% -52.1% -64.5%

w/o Heavy Tail -11.2% -33.2% -28.6% -38.3% -33.8% -44.0% -53.2%
(-10%) (-5%) (2%) (-24%) (-22%) (-16%) (-18%)

w/o Nonlinearity -8.2% -23.1% -25.8% -35.0% -26.1% -37.8% -39.2%
(-34%) (-34%) (-8%) (-30%) (-39%) (-28%) (-39%)

w/o Both -8.2% -21.9% -26.1% -36.2% -25.7% -38.1% -38.1%
(-34%) (-37%) (-7%) (-28%) (-40%) (-27%) (-41%)

upon the surrogate series we compute the risk measures of maximum drawdowns and worst

year-over-year returns to compare them to each other as well as to the original series. Figure 4

holds the results for the maximum drawdown analysis. It also includes the drawdowns of the

original portfolios for a better comparison. However, it has to be noted that the data for

the original portfolios differs form those of the surrogates as it comprises 40 observations per

holding whereas the surrogate time series hold 200 observations per holding. Again, we only

show results for maximum drawdowns because those for worst year-on-year returns look very

similar.
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Five important insights can be gained from the figure. First, diversification works. We observe

that the average drawdown for better diversified portfolios is smaller than for concentrated

portfolios. Second, removing the stylized facts from the return series leads to a reduction in

maximum drawdowns across all levels of diversification. Third, nonlinear dynamics seem to

be a bigger driver for drawdown risk as drawdowns of the surrogate series without nonlinearity

are always below those of the surrogate series without heavy tails. Fourth, removing both,

nonlinear dynamics and heavy tails from the return distribution only leads to a marginal

increase in drawdowns compared to a time series where only nonlinear dynamics were re-

moved. Fifth, the removal of the two stylized facts has a larger influence on the reduction

of drawdowns at higher degrees of diversification. For the surrogates without heavy tails

these results are consistent with the increase of excess kurtosis in portfolio holdings that is

reported in Figure 2. If we believe that excess kurtosis has a positive effect on drawdowns

it is intuitive that drawdown reduction of the surrogate series without heavy tails increases

in portfolio holdings as these portfolios are more exposed to a driver drawdowns. However,

with a constant level of nonlinearity across portfolio holdings there is no such obvious expla-

nation for the positive relationship between drawdown reduction and portfolio holdings for

the surrogate series without nonlinearity.

To further uncover the different drawdown reduction properties of the surrogate series Fig-

ure 5 compares the relative reduction in maximum drawdowns between the surrogate series

without heavy tails and surrogate series without nonlinear dynamics and the original portfo-

lio data. It can be observed that the higher the number of portfolio holdings the higher the

relative reduction in drawdowns for both surrogate time series. When comparing the ratio

between relative drawdown reduction of both surrogate series we find that there seems to

be a constant relationship. Except for portfolios with less than three holdings, the relative

reduction in drawdowns that is achieved with a surrogate series without heavy tails is roughly

50% of the reduction that can be achieved with a surrogate series without nonlinearity.
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Figure 4: Maximum drawdowns of stock portfolios with different holdings after disentangling
stylized facts
The figure holds maximum drawdowns for three surrogates series of stock portfolios with different holdings. The

portfolios are composed using daily log-returns of randomly chosen constituents of the S&P 500 index for which return

data is available between 01/01/1992 and 31/12/2021, resulting into an investible pool of 144 stocks. For each number

of holdings 40 equal-weighted portfolios were formed, for which the drawdowns are illustrated by the green candle. For

each portfolio we create five surrogates leading to a total number of 200 time series per portfolio holding. The surrogates

without heavy tails were created using the IAAWTn method. The surrogates without nonlinearity were created using

the IAAFT method. The surrogates without both stylized facts were created using the IAAFTn method.

27



-50%

-40%

-30%

-20%

-10%

0% 0%

20%

40%

60%

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30 35 40 45

Portfolio Holdings

M
ax

.
D

D
R

ed
u
ct

io
n

R
elative

S
p
read

R
ed

u
ction

w/o Heavy Tail w/o Nonlinearity Relative Difference

Figure 5: Relative maximum drawdown reduction of stock portfolios with different holdings
after disentangling stylized facts
The figure holds mean maximum drawdown reductions for two surrogates series of stock portfolios with different holdings.

The portfolios are composed using daily log-returns of randomly chosen constituents of the S&P 500 index for which

return data is available between 01/01/1992 and 31/12/2021, resulting into an investible pool of 144 stocks. For each

number of holdings 40 equal-weighted portfolios were formed. For each portfolio we create five surrogates leading to

a total number of 200 time series per portfolio holding. The surrogates without heavy tails were created using the

IAAWTn method. The surrogates without nonlinearity were created using the IAAFT method. The dots show the

relative reduction of maximum drawdowns of the surrogate time series relative to the drawdown of the original time

series on the left axis. The grey line shows the ratio between the two time series on the right axis. It thus measures the

ratio between the relative reductions of spreads.

6.4 Example for Improved VaR Scaling

To demonstrate how the gained insights from the above analyses can be used in practice, a

simple example on backtesting a risk model is outlined below. This exemplary test helps to

answer two questions. First, whether improper scaling of variance leads to worse risk esti-

mates and second, whether that flaw can be corrected by the use of correct scaling exponents.

In the setup of the example we are guided by the regulation. Within the old and the new Basel

Framework banks are required to backtest their risk models based on the VaR risk measure

over the most recent 12 months of data (BCBS 2019, MAR32.4, BCBS 2020, MAR32.4).
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The framework is a very straightforward procedure for comparing the risk measures with the

actual trading outcomes. To assess the quality of the risk model, banks have to calculate

the number of times that the trading outcomes were not covered by the risk measures. This

means that a 99% daily VaR should cover 99% of the daily trading outcomes (BCBS 2019,

MAR99.34).

Following the regulation we use the VaR as the risk metrics of interest for our model backtest.

For this test we use our daily S%P 500 Index time series for the most recent 40 years of data.

To keep things simple, our expected VaR equals the VaR that we calculate from the observed

mean and variance from the most recent 12 months of data. Then we compare how many times

that estimate was exceeded thereafter. We update our estimate on ten day non-overlapping

rolling windows leading to a total sample of 1,059 observations. To test the overall quality

of the VaR model we repeat the above steps for confidence levels between 90% and 99.9% at

steps of 0.5%.

To find an answer to the above two questions, we test three VaR risk models. First, we

calculate a daily VaR model that is evaluated against the following one day return. This

model serves as a baseline benchmark as the risk model and the evaluation period have the

same time scale and no adjustments are necessary. Second, we use the results of the base

line model and scale them with 100.5 to retrieve a 10-day VaR estimate (Recap, that the base

horizon for the capital requirement regulation is 10 days). This model is then compared to

the following 10-day return. A comparison between the quality of this second model and our

base line model should help answering the question whether ignoring the scaling properties

of returns alters VaR estimates. Third, similar to our second risk model, we scale the results

of our base model with the local scaling exponent of the most recent estimate within our in

sample period to retrieve 10-day VaR estimates. The scale exponent estimates are based on

the algorithm of (Ihlen & Vereijken, 2014)8 using the most recent five years of available data.

The decision to use a relatively long history of returns for the scaling exponent estimation is

based on the fact that such estimates can yield spurious results for short time series (Shao

et al., 2012). Thus we follow the recommendation to set the sample size greater than 1,000

observations (Ihlen, 2012). Also, we estimate the local 10-day scaling exponent using an

8More technical details about the algorithm can be found in Ihlen (2012) and Ihlen and Vereijken (2013).
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interpolated value for local scale estimations of 9, 10, and 11 days because including more

scales is recommended to increase robustness (Ihlen & Vereijken, 2014). We arrive at our

10-day VaR estimate by taking our base 1-day VaR and multiplying it with 10Hl where Hl

is our local scaling exponent estimation.9

The results of our analysis are summarized in Figure 6. It shows the percentiles of the VaR

models on the y-axis and the respective fractions of returns that fall out of the confidence

interval on the x-axis. The black line refers to the null hypothesis, i.e. that 1% of returns fall

below the 99% VaR estimate. The 95% level confidence bands around that null hypothesis

are calculated assuming normally distributed shocks. The results for our base 1-day VaR

estimate are represented with black X’s. We find that though simple, the VaR estimate

performs relatively well as all of its estimates fall within the confidence bands of the null

hypothesis. When comparing the results of our estimate using 100.5 as the uniform scaling

coefficient (red dots) we find that the performance of the VaR model becomes worse. At lower

confidence levels between 90% and 95% the model is too conservative whereas at higher levels

between 97.5% and 100% the model underestimates the frequency of extreme events. Lastly,

when comparing the 10-day VaR model that was constructed using a local scaling exponent we

find that the performance of the model is much more in line with the base 1-day model. The

flaws of under- and overestimation that were introduced with the uniform scaling exponent

appear to be corrected when using correct time scaling. This observation is supported by

the data as the average distance from the null hypothesis is 0.88% for the uniformly scaled

VaR model and 0.47% for the model using correct scaling. Even more so, the model using

local time scales shows the best performance as it most closely scattered around the null

hypothesis, meaning that the predictions made by the model are the closest to out of sample

outcomes.

9We acknowledge that multiplying a VaR forecast with a scaling factor comes at the additional assumption
that the mean of the return series is zero. We keep this assumption as it is implicitly embedded in the
regulation. Recap on section 1 for details.

30



0%

2.5%

5%

7.5%

10%

12.5%

90% 92.5% 95% 97.5% 100%

Percentiles

F
ra

ct
io

n
s

Null Hypothesis 1-day VaR

Scaled 10-day VaR Scale Adjusted 10-day VaR

Figure 6: Comparison between scale-adjusted and unadjusted 10-day historical VaR forecast
The figure compares the accuracy of three VaR risk models. The black line refers to the null hypothesis, i.e. that 1% of

returns fall below the 99% VaR estimate. The grey area around the hypothesis is the 95% level confidence interval that

was calculated assuming normally distributed shocks. The black crosses refer to a 1-day VaR model that was estimated

using the historical distribution of the most recent 12 months of data and was evaluated against the following 1-day

return. The red dots refer to a scaled version of the 1-day model. This model was scaled with 100.5 to retrieve a 10-day

VaR estimate and was evaluated against the following 10-day return. The blue dots also refer to a scaled version of

the 1-day model. This model was scaled with 10Hl where Hl is the local scaling exponent to arrive at a 10-day VaR

estimate and was evaluated against the following 10-day return. The local scaling exponent Hl was estimated based

on the algorithm of (Ihlen & Vereijken, 2014) using the past five years of data with an interpolation for local scale

estimations of 9,10, and 11 days.

To demonstrate that the results originate from the wrong scaling of variance, we repeat the

example with a more sophisticated model setup. Again, we estimate three VaR models.

First, a base 1-day VaR model and then two scaled 10-day VaR models of which one is

scaled with the square root of time and the other is scaled with the estimated local scaling

component. Now we estimate the base 1-day model using an AR(1) model for the mean

and a GARCH(1,1) for the volatility. Again, we fit the base model to the most recent 12

months of data and make a 1-day forecast out of sample. All other specifications as well as

the scaling for our two 10-day VaR forecasts are the same as before. The results are reported
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in Figure 7.
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Figure 7: Comparison between scale-adjusted and unadjusted 10-day AR(1) GARCH(1,1)
VaR forecast
The figure compares the accuracy of three VaR risk models. The black line refers to the null hypothesis, i.e. that 1% of

returns fall below the 99% VaR estimate. The grey area around the hypothesis is the 95% level confidence interval that

was calculated assuming normally distributed shocks. The black crosses refer to a 1-day VaR model that was estimated

using an AR(1) model for the mean and a GARCH(1,1) model for the variance. We fit both models to the most recent

12 months of data and make a VaR forecast assuming normally distributed shocks that was evaluated against the

following 1-day return. The red dots refer to a scaled version of the 1-day model. This model was scaled with 100.5

to retrieve a 10-day VaR estimate and was evaluated against the following 10-day return. The blue dots also refer to

a scaled version of the 1-day model. This model was scaled with 10Hl where Hl is the local scaling exponent to arrive

at a 10-day VaR estimate and was evaluated against the following 10-day return. The local scaling exponent Hl was

estimated based on the algorithm of (Ihlen & Vereijken, 2014) using the past five years of data with an interpolation

for local scale estimations of 9,10, and 11 days.

Looking at the graph we receive a very similar picture as before. Again, the base 1-day VaR

forecast is relatively accurate with all forecasts falling into the 95% confidence interval. Scal-

ing this base forecast to ten days without using the appropriate scaling behavior worsens the

performance of the forecast. Respecting the local scaling behavior improves the performance

of the scaled VaR estimate such that it is very similar to the base forecast. Again, looking

at the average distance from the null hypothesis yields support for what we see from the
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visual inspection of the figure. The uniformly scaled VaR model misses the null by 1.06%

on average whereas the model using the correct scaling has an average error of only 0.62%.

Overall, we again observe that wrong scaling worsens the accuracy of our VaR forecast and

incorporating the respective scaling behavior fixes the problem.

7 Conclusion

We analyze the effect of the two stylized facts, heavy tails and nonlinear dynamics, on fi-

nancial stability. We find that financial markets across various asset classes are clearly more

destabilized from nonlinear dynamics than from heavy-tailed distributions per se. We also

observe that the effect gets more pronounced with an increasing degree of portfolio diversifi-

cation. However, the relative reduction of drawdowns between a return series without heavy

tails and a series without nonlinear dynamics appears to be rather constant. In a simple

example, we show not only how the neglection of nonlinear dynamics can cause errors in risk

models but also how the integration of scaling dynamics can enhance the performance of such

models.

Overall, we conclude that nonlinear dynamics in asset returns are clearly more destabilizing

for markets than heavy-tailed distributions. Our findings call for a rethinking of risk and have

strong implications for financial regulation within which nonlinear dynamics of asset returns

are mostly neglected. To enhance the stability of financial markets regulators should either

include measures of nonlinearity in capital requirement regulations or take other measures to

reduce nonlinear dependencies in asset returns in the first place. Though this paper focuses

largely on financial regulation its implications reach beyond regulators and also touch on the

areas of risk management, investment management, and financial theory. For example, the

finding that nonlinear dynamics appear to cause more harm to investors raises the question

of how to properly hedge against this risk or whether a risk premium can be earned. From

a more theoretical perspective, it has to be questioned whether the vast literature of linear

asset pricing models is worthwhile if the nonlinear dynamics in asset returns appear to be a

large driver of downside risk. We leave the answers to these questions to future analysis.
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Appendices

A Company Names

The company names according to Datastream of the constituents in our investment pool for

the equity portfolios are:

ABBOTT LABORATORIES, ADVANCED MICRO DEVICES, AFLAC, AIR PRDS CHEMS, ALTRIA GROUP, AMERICAN EXPRESS,

AMERICAN INTL GP, ANALOG DEVICES, AON CLASS A, APA, APPLE, APPLIED MATS, AUTOMATIC DATA PROC, AVERY

DENNISON, BALL, BANK OF AMERICA, BANK OF NEW YORK MELLON, BATH AND BODY WORKS, BECTON DICKINSON,

BOEING, BRISTOL MYERS SQUIBB, BROWN FORMAN B, CAMPBELL SOUP, CATERPILLAR, CHEVRON, CHURCH DWIGHT

CO, CINCINNATI FINL, CLOROX, COCA COLA, COLGATE PALM, COMCAST A, COMERICA, CONAGRA BRANDS, CONSOLI-

DATED EDISON, CORNING, CSX, CUMMINS, CVS HEALTH, DANAHER, DEERE, DOVER, DXC TECHNOLOGY, EATON, EDI-

SON INTL, ELI LILLY, EMERSON ELECTRIC, ENTERGY, EQUIFAX, EXELON, EXXON MOBIL, FEDEX, FIFTH THIRD BAN-

CORP, FIRSTENERGY, FMC, FORD MOTOR, FRANKLIN RESOURCES, GENERAL ELECTRIC, GENERAL MILLS, GLOBE LIFE,

HALLIBURTON, HASBRO, HERSHEY, HESS, HOME DEPOT, HOWMET AEROSPACE, HP, HUMANA, ILLINOIS TOOL WORKS,

INTEL, INTERNATIONAL BUS MCHS, INTERNATIONAL PAPER, INTERPUBLIC GROUP, INTL FLAVORS FRAG, JACOBS SO-

LUTIONS, JOHNSON JOHNSON, JP MORGAN CHASE CO, KELLOGG, KEYCORP, KIMBERLY CLARK, KLA, L3HARRIS TECH-

NOLOGIES, LENNAR A, LINCOLN NATIONAL, LOEWS, LOWE S COMPANIES, LUMEN TECHNOLOGIES, M T BANK, MARSH

MCLENNAN, MASCO, MCCORMICK COMPANY NV, MCDONALDS, MEDTRONIC, MERCK COMPANY, MOTOROLA SOLU-

TIONS, NEWELL BRANDS XSC, NEWMONT, NIKE B, NORTHROP GRUMMAN, NUCOR, OMNICOM GROUP, PACCAR, PARKER

HANNIFIN, PEPSICO, PFIZER, PNC FINL SVS GP, PPG INDUSTRIES, PROCTER GAMBLE, PROGRESSIVE OHIO, PULTE-

GROUP, RAYTHEON TECHNOLOGIES, REGIONS FINL NEW, ROCKWELL AUTOMATION, S P GLOBAL, SCHLUMBERGER,

SEALED AIR, SHERWIN WILLIAMS, SOUTHWEST AIRLINES, STANLEY BLACK DECKER, STATE STREET, STRYKER, SYSCO,

TARGET, TELEFLEX, TERADYNE XSC, TEXAS INSTRUMENTS, TEXTRON, THERMO FISHER SCIENTIFIC, TJX, TRANE

TECHNOLOGIES, TRAVELERS COS, TYSON FOODS A, UNION PACIFIC, V F, VIATRIS, W R BERKLEY, WALGREENS BOOTS

ALLIANCE, WALMART, WALT DISNEY, WELLS FARGO CO, WEYERHAEUSER, WHIRLPOOL, WILLIAMS, WW GRAINGER,

X3M
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B MF-DFA Model Specification

The MF-DFA algorithm is one of the most widely employed workflow to analyze nonlinear

dynamics of time series. It slices the time series into sub series of equal length. This process

is repeated for varying lengths, which are also referred to as the model’s scales, s. For each

iteration, the trend within each sub series is removed and fluctuations are measured using

the error function F (q, s) defined as

F (q, s) =

{
1

2N

2N∑
k=1

[F̂ 2(s, k)]q/2

}1/q

(B.1)

for q 6= 0, and

F0(s) = exp

{
1

4N

2N∑
k=1

ln[F̂ 2(s, k)]

}
(B.2)

for q = 0, where F̂ 2(s, k) is the variance of the signal xi(i = 1, . . . , Ns) around its local trend,

defined as

F̂ 2(s, k) =
1

s

s∑
k=1

{
x(k−1)s+j − Pk,j

}2
(B.3)

where N is the finite length of the time series and Pk,j is the polynomial trend subtracted

for jth data in kth sub series (k = 1, ..., N). The error function F (q, s) can be interpreted

as an extended version of a root-mean-squared error function whose exponents change in q.

The overall goal of the analysis is to determine whether the fluctuations around the local

trend depend on the time scale s of the sub series for different values of q. The strength of

nonlinear dynamics can be quantified using the power law
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F (q, s) ∼ sh(q) (B.4)

The strength of nonlinear dynamics is then measured as the maximum ∆h of the generalized

Hurst exponent profile defined as

∆h = max
q
h(q)−min

q
h(q) (B.5)

This means that if h(q) varies with the change of q, the time series is exposed to nonlinear

dynamics. For series that only exhibit linear autocorrelation h(q) is a constant and thus

∆h = 0. Another measure of nonlinear dynamics is the maximum Hölder spread ∆α which

measures the width of the so called Hölder or singularity spectrum f(α). This spectrum can

be retrieved with the help of a Legendre transform (Feder, 1988; Peitgen et al., 2004) of the

spectrum of generalized Hurst exponents as

α = h(q) + qh′(q), f(α) = q[α− h(q)] + 1 (B.6)

The Legendre transform is a way to display the spectrum of generalized Hurst exponents

differently. It does not have an influence on the results of the analysis. The width of the

singularity spectrum, ∆α is the most widely adopted measure for the strength of nonlinear

dynamics (Jiang et al., 2019). We also use this indicator to measure nonlinear dynamics to

make our work comparable to that of others.

In the model setup, determining an optimal detrending polynomial Pk,j , scales s, and range

for q is crucial for retrieving meaningful results from the analysis. However, finding optimal

parameters is still a widely debated task in literature (Grech & Pamu la, 2013; Kantelhardt

et al., 2002; Oswiecimka et al., 2013; Pamu la & Grech, 2014; Shao et al., 2012).
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To tackle this task we follow the recommendations made by Ihlen (2012). To avoid overfitting

we choose a to let Pk,j be of first order. Further, we use 20 loq-equally spaced scales starting

at smin = 32 to smax = N/10, where N denotes the series’ finite length. Log-equal spacing

is recommended because of the power law relation between F (q, s) and s (Ihlen, 2012). We

set smin = 32 because literature finds that spurious nonlinear dynamics are introduced for

financial time series with less than 30 observations (Buonocore et al., 2016). This finding is

further bolstered by literature focusing on measurement of nonlinear dynamics. One spurious

source are short samples where fluctuations not related to nonlinear dynamics may dominate

over fluctuations that originate from nonlinear dynamics due to small statistics of short data

(Grech & Pamu la, 2012; Grech & Pamu la, 2013; López & Contreras, 2013; Mukli et al.,

2015; Pamu la & Grech, 2014; Rak & Grech, 2018). We set smax = N/10 because in the

fitting procedure the number of subseries would be very small, making estimates statistically

unreliable. These restrictions are more conservative than those by Kantelhardt et al. (2002)

who proposed the MF-DFA method. They put an upper limit smax to their scales at N/4

and a lower limit of smin > 10. It is worth noting however, that the choice of the scale

does not appear to affect results of a DFA analysis as much as it does for other analysis

methods of nonlinear dynamics (Shao et al., 2012). We set our moment order q ∈ [−5, 5].

This decision is guided by the fact that the potential range of scaling exponents becomes

broader as the corresponding PDF deviates further from a Gaussian distribution. Thus, in

choosing the range for our q we relate exponents of power law tails in financial time series

that are found to range between two and five (e.g., Ghashghaie et al., 1996; Gopikrishnan

et al., 1998; Longin, 1996; Pagan, 1996; Rak & Grech, 2018). We chose to limit |q| within

that ballpark to avoid the introduction of spurious nonlinear dynamics which is known to

accelerate for larger ranges of q and is especially relevant for distributions exhibiting heavy

tails (Ihlen, 2012; Pamu la & Grech, 2014; Rak & Grech, 2018). The decision to employ an

equal width of the range of q around 0 is to keep estimates unbiased. This is recommended

by Ihlen (2012) to make the analysis balanced because estimations in the MF-DFA procedure

will be dominated by segments with small (large) fluctuations if q < 0 (q > 0) due to the

way the error function Equation B.1 is set up (Kantelhardt et al., 2002).
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